Surrogate model for gravitational wave signals from black hole binaries built on black hole perturbation theory waveforms calibrated to numerical relativity:

one model to rule both comparable and extreme mass ratio regime

Tousif Islam

Center for Scientific Computing and Data Science Research University of Massachusetts Dartmouth

[tislam@umassd.edu]

[https://tousifislam.com]

Dec 12, 2022 LISA Community Call

1

Perturbation Surrogate

Scott Field (UMassD), Scott Hughes (MIT), Gaurav Khanna (URI), Vijay Varma (AEI), Matthew Giesler (Cornell), Mark Scheel (Caltech) [Islam +, arXiv.2204.01972]

Comparison with Self-force

Barry Wardell (UCD), Adam Pound (Southampton), Niels Warburton (UCD), Scott Field (UMassD), Gaurav Khanna (URI) [Islam +, In preparation]

Point-Particle Black Hole Perturbation Theory (ppBHPT)

The smaller black hole is modeled as a point-particle with no internal structure.

The framework was originally developed for extreme mass ratio inspirals and/or solving ringdown regime.

First, we compute the trajectory taken by the point-particle.

We use that trajectory to compute the gravitational wave emission by solving Teukolsky equation.

Best Way to generate accurate Waveform for extreme mass ratio binaries

Tousif Islam | UMass Dartmouth

Where should we trust ppBHPT ?

[Image credit: arXiv:1410.7832]

6

None of the current NR-Surrogate / EOB / Phenom models are accurate in high mass ratio regime

Intermediate Mass Ratio Binaries : GW190814 (mass ratio q~10)

ppBHPT gives most accurate waveform for higher mass ratio systems; However, it is computationally expensive

"Kludge" Models

[Barack+, Babak+, Gair+, Chua+]

Second Order Self Force

[Wardell+]

BHPTNRSur1dq1e4 : an overview

Available via

Black-hole Perturbation Toolkit

gw-surrogate

- **Covers comparable to large Mass Ratio** : q=2.5 to q=10⁴
- Trained on ppBHPT waveforms from time-domain Teukolsky Solver :
 - OPA waveforms, updated plunge model in the ppBHPT framework
- Many modes
 - 25 modes up to \ell=10
- Longer waveforms : [Relevant for LIGO, Cosmic Explorer, Einstein Telescope]
 35000M
- Calibrated to NR in the small mass ratio regime :
 - modes are calibrated up to \ell=5

Tuning ppBHPT to NR in small mass ratio regime

- Can we build a single model from comparable to large/extreme mass ratio binaries?
- Can we extend perturbation theory framework in small mass ratio regime?
- Do we need to calibrate ppBHPT to NR in the small mass ratio regime ?
- Will the calibration work for all modes?

Tuning ppBHPT to NR in small mass ratio regime

Rescaling ppBHPT waveforms:
 - up to \ell=5

$$\mathbf{h}_{\mathbf{NR}} := h_{\mathbf{S},\alpha^{\ell},\beta}^{\ell,m}(t;q) = \alpha^{\ell} h_{\mathbf{S}}^{\ell,m}(t\beta;q)$$
rescaled ppBHPT raw ppBHPT

• Obtain the scaling parameters by optimizing the error between scaled ppBHPT and NR (NRHybSur3dq8) :

$$\min_{\alpha^{\ell},\beta} \frac{\int_{t=-5000M}^{t=115M} \left| h_{\mathbf{S},\alpha^{\ell},\beta^{\ell}}^{\ell,m}(t;q) - h_{\mathrm{NRHyb}}^{\ell,m}(t;q) \right|^{2} dt}{\int_{t=-5000M}^{t=115M} \left| h_{\mathrm{NRHyb}}^{\ell,m}(t;q) \right|^{2} dt}$$

9

Comparison to NRHybSur3dq8 / example waveforms

Tousif Islam | UMass Dartmouth

Scaling ppBHPT waveforms to match NR

Fourth Order polynomial formula used for the scaling parameters as a function of small mass ratio (1/q)

Tousif Islam | UMass Dartmouth

Small Mass Ratio Regime : 12 Comparison to NRHybSur3dq8 / Time Domain Error 12 (2,2) mode error ~ 10-3 10⁻¹ All NRHybSur Modes 10-2 22 33

Errors drop further when only INSPIRAL waveform is considered

(3,3) and (4,4) modes

error ~ 10⁻²

Comparison to NRHybSur3dq8 / Frequency Domain Mismatch

Tousif Islam | UMass Dartmouth

How small can we go in mass ratio and still get a good match?

We have been able to obtain reasonable scaling until q=1.2

Surrogate provides an alternative way to generate wfs because ppBHPT code breaks there

Higher modes errors are not as good

[Validation] Testing Scaling over a longer time window

15

Testing Scaling in Intermediate Mass Ratio Regime : [Validation] Comparison to SXS NR at q=30

NR Simulation : Matthew Giesler, Mark Scheel et al

Tousif Islam | UMass Dartmouth

Explaining Alpha-Beta Scaling:

Comparison to Higher Order Self-force Calculation

$$\mathbf{h}_{\mathbf{NR}} := h_{\mathbf{S},\alpha^{\ell},\beta}^{\ell,m}(t;q) = \alpha^{\ell} h_{\mathbf{S}}^{\ell,m}(t\beta;q)$$
rescaled ppBHPT raw ppBHPT

Second Order Self-force Calculation

$$\mathbf{h}_{NR} \coloneqq \mathbf{h}_{0PA} + \mathbf{h}_{1PA}$$

[Wardell, Pound, Warburton et al, 2021]

Tousif Islam | UMass Dartmouth

Explaining Alpha-Beta Scaling:

Comparison to Higher Order Self-force Calculation

1PA self-force waveform can be obtained using OPA self-force waveform using an alpha-beta rescaling !!

18

Explaining Alpha-Beta Scaling:

Comparison to Higher Order Self-force Calculation

19

What's Next in BHPTNRSur?

Aligned spinning Model

[3<=q<=10000; -0.6<=a<=0.6]

Katie Rink, Kevin González-Quesada, Scott Field, Tousif Islam, Gaurav Khanna, Vijay Varma

Eccentric Model

[3<=q<=100; 0.0<=ecc<=0.2]

Tousif Islam, Scott Field, Gaurav Khanna, Niels Warburton

Precessing Spin Model

[3<=q<=10000; slightly misaligned system]

Ritesh Bacchar, Tousif Islam, Scott Field, Gaurav Khanna

git clone https://github.com/BlackHolePerturbationToolkit/BHPTNRSurrogate.git

pip install gwsurrogate

Summary

ppBHPT waveform model from comparable to extreme mass ratios including higher order modes (1.2<=q<=10,000)

Thank You